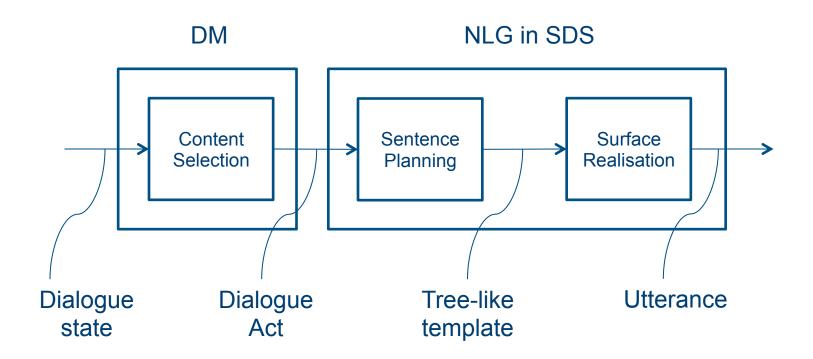

Scalable Neural Language Generation for Open Domain Dialogue Systems

Speaker: Tsung-Hsien Wen

Supervisor: Professor Steve Young

Dialogue Systems Group

Spoken Dialogue System



NLG: Problem Definition

- Given a meaning representation, map it into a natural language
 - inform(type=Seven_days,food=Chinese)
 - Seven_days serves good Chinese food.

- What we care about?
 - adequacy, fluency, readability, variation (Stent et al 2005)

Traditional pipeline approach

Motivation

- Traditionally, NLG is not scalable because :
 - Embrace a rule-based regime
 - Highly specialised for in-domain applications

- Talking to NLG is not enjoyable because of :
 - Frequent repetition of certain output forms
 - Awkward responses that are not colloquial

Why RNN for NLG?

- Elegant structure for modeling <u>sequences</u>.
- Flexible architecture for adding <u>auxiliary information</u>.
- Collecting data is convenient and quick (<u>crowdsourcing</u>).
- More human-like and <u>colloquial</u>.
- No expert knowledge is required.
- <u>Extensible</u>, adaptation techniques exist.
- <u>Distributed representation</u>
- Less cost, quicker development cycle
- End-to-End trainable

Challenges

- How to render the exact information we want (with the existence of language variation)?
- Adopted methods:
 - Overgeneration Reranking paradigm (Oh and Rudnicky 2000)
 - Sample words from a Recurrent Generation Model output.
 - Select top candidates based on some scoring criteria.

Part 1 Heuristically Gated RNN Generator

Dialogue Systems Group

- Recurrent Generation Model
- Convolutional Semantic Reranker
- Backward RNN Reranker
- Experiments
 - Setup
 - Automatic Evaluation
 - Human Evaluation

- Recurrent Generation Model
- Convolutional Semantic Reranker
- Backward RNN Reranker
- Experiments
 - Setup
 - Automatic Evaluation
 - Human Evaluation

Recurrent Generation Model (1/2)

delexicalisation

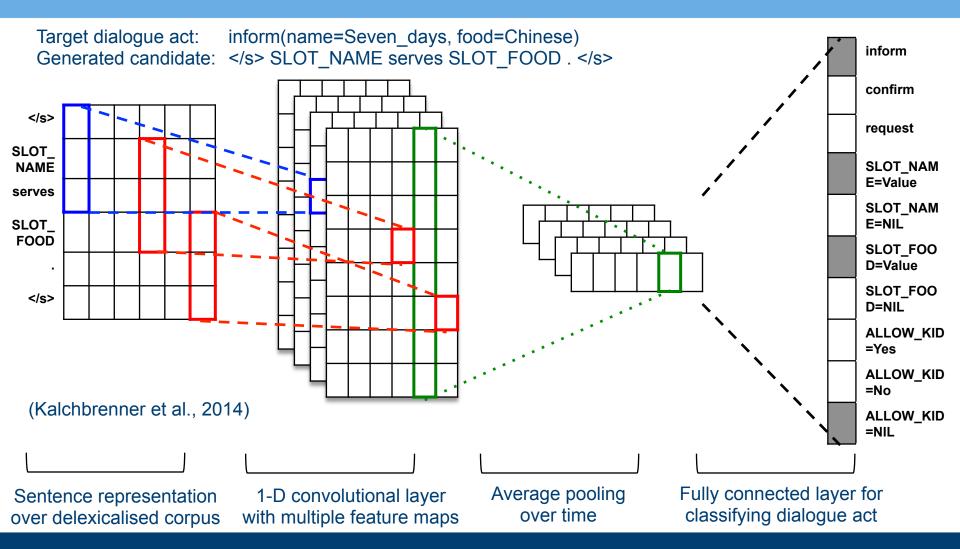
(Mikolov et al 2010)

Recurrent Generation Model (2/2)

- Heuristically check (<u>exact match</u>) whether a given slot token has been generated.
- Apply a decay factor δ <1 on generated feature values.
- Use features to configure the network NOT to re-generate slots that have already generated.
- Binary slots and don't care values cannot be handled.

Feature value		SLOT_NAME	serves	SLOT_FOOD		
NAME	1	1	δ	δ^2	δ^3	δ^4
FOOD	1	1	1	1	δ	δ^2

- Recurrent Generation Model
- Convolutional Semantic Reranker
- Backward RNN Reranker
- Experiments
 - Setup
 - Automatic Evaluation
 - Human Evaluation



Convolutional Semantic Reranker (1/2)

- Designed to handle :
 - Binary slots: ALLOW_KID=yes/no
 - "don't care" values: AREA=dont_care
- Use CNN for semantic validation

Convolutional Semantic Reranker (2/2)

- Recurrent Generation Model
- Convolutional Semantic Reranker
- Backward RNN Reranker
- Experiments
 - Setup
 - Automatic Evaluation
 - Human Evaluation

Backward RNN Reranker

- Motivation:
 - Considering backward context can reduce grammatical errors.
 - Ex. "Seven Days is an exceptional restaurant."
- Integrating information from both directions is tricky.
 - The generation procedure is sequential in one direction only.
- Alternative => train an RNN in reverse direction and use it for rescoring.

- Recurrent Generation Model
- Convolutional Semantic Reranker
- Backward RNN Reranker
- Experiments
 - Setup
 - Automatic Evaluation
 - Human Evaluation

Setup

- Data collection:
 - SFX Restaurant domain: 8 system act types, 12 slots (1 is binary).
 - Workers recruited from Amazon MT
 - Asked to generate system responses given a dialogue act.
 - Result in ~5.1K utterances, 228 distinct acts
- Training: BPTT, L2 regularisation, SGD w/ early stopping.

train/valid/test: 3/1/1, data up-sampling

- Recurrent Generation Model
- Convolutional Semantic Reranker
- Backward RNN Reranker
- Experiments
 - Setup
 - Automatic Evaluation
 - Human Evaluation

Automatic Evaluation (1/2)

- Test set: 1039 utterances, 1848 required slots.
- Metrics: BLEU-4 (against multiple references), ERR(slot errors)
- Results averaged over 10 random initialised networks
- Compared with class-based LM (classIm), handcrafted generator (hdc), and kNN based model.

Automatic Evaluation (2/2)

BL	EU	hdc	knn	classIm	rnn
Selection	1/20	0.440	0.591	0.757	0.777
Beam	5/20	-	-	0.678	0.712

EF	RR	hdc	knn	classIm	rnn
Selection	1/20	0	17.2	47.8	0
Beam	5/20	-	-	104.6	3.1

- Recurrent Generation Model
- Convolutional Semantic Reranker
- Backward RNN Reranker
- Experiments
 - Setup
 - Automatic Evaluation
 - Human Evaluation

- Setup
 - Judges (~60) recruited from Amazon MT.
 - Asked to evaluate two system responses pairwise.
 - Comparing handcrafted (hdc), RNN top-1 (rnn₁), RNN sample from top-5 (rnn₅), and class-based LM sampled from top-5 (classlm₅).
- Metrics:
 - Informativeness, Naturalness (rating out of 5)
 - Preference

Metrics	hdc	rnn1	hdc	rnn5
Info.	3.75	3.81	3.85	3.93*
Nat.	3.58	3.74**	3.57	3.94**
Pref.	44.8%	55.2%*	37.2%	62.8%**
Metrics	rnn ₁	rnn5	classIm ₅	rnn5
Metrics Info.	rnn ₁ 3.75	rnn ₅ 3.72	classlm ₅ 4.02	rnn ₅ 4.15%*

Metrics	hdc	rnn1	hdc	rnn5
Info.	3.75	3.81	3.85	3.93*
Nat.	3.58	3.74**	3.57	3.94**
Pref.	44.8%	55.2%*	37.2%	62.8%**
Metrics	rnn1	rnn5	classIm ₅	rnn5
Metrics Info.	rnn ₁ 3.75	rnn ₅ 3.72	classlm ₅ 4.02	rnn ₅ 4.15*

Metrics	hdc	rnn1	hdc	rnn5
Info.	3.75	3.81	3.85	3.93*
Nat.	3.58	3.74**	3.57	3.94**
Pref.	44.8%	55.2%*	37.2%	62.8%**
Metrics	rnn ₁	rnn5	classlm ₅	rnn5
Metrics Info.	rnn ₁ 3.75	rnn ₅ 3.72	classlm ₅ 4.02	rnn5 4.15%*

Metrics	hdc	rnn1	hdc	rnn5
Info.	3.75	3.81	3.85	3.93*
Nat.	3.58	3.74**	3.57	3.94**
Pref.	44.8%	55.2%*	37.2%	62.8%**
Metrics	rnn1	rnn5	classIm ₅	rnn5
Metrics Info.	rnn ₁ 3.75	rnn ₅ 3.72	classlm ₅ 4.02	rnn ₅ 4.15*

Metrics	hdc	rnn1	hdc	rnn5
Info.	3.75	3.81	3.85	3.93*
Nat.	3.58	3.74**	3.57	3.94**
Pref.	44.8%	55.2%*	37.2%	62.8%**
Metrics	rnn ₁	rnn5	classIm ₅	rnn5
Metrics Info.	rnn ₁ 3.75	rnn ₅ 3.72	classlm ₅ 4.02	rnn5 4.15%*

#	Dialogue act and example realisations of our system, by sampling from top-5 candidates
1	inform(name="stroganoff restaurant",pricerange=cheap,near="fishermans wharf")
	stroganoff restaurant is a cheap restaurant near fishermans wharf.
	stroganoff restaurant is in the cheap price range near fishermans wharf.
2	reject(kidsallowed=yes,food="basque")
	unfortunately there are 0 restaurants that allow kids and serve basque .
3	informonly(name="bund shanghai restaurant", food="shanghainese")
	i apologize , no other restaurant except bund shanghai restaurant that serves shanghainese .
	sorry but there is no place other than the restaurant bund shanghai restaurant for shanghainese .
4	confirm(goodformeal=dontcare)
	i am sorry . just to confirm . you are looking for a restaurant good for any meal ?
	can i confirm that you do not care about what meal they offer?
5	request(near)
	would you like to dine near a particular location?
6	reqmore()
	is there anything else i can do for you?
7	select(kidsallowed=yes, kidsallowed=no)
	are you looking for a restaurant that allows kids, or does not allow kids?
8	goodbye()
	thank you for calling . good bye .

A Brief Summary

- RGM learns generation decisions from corpus.
- No rules, grammars, semantic alignments, or heavy feature engineering are required.

- Can we do better?
 - No heuristic rules for gates.
 - Direct control of generating arbitrary slot-value pairs.
 - Better performance.

Part 2 Semantically Controlled LSTM Generator

Dialogue Systems Group

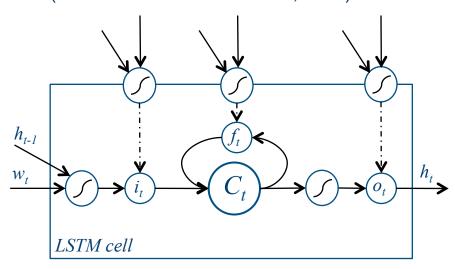
- SC-LSTM
- Deep Model
- Experiments
 - Automatic Evaluation
 - Human Evaluation

SC-LSTM (1/4)

Original LSTM cell

$$\mathbf{i}_t = \sigma(\mathbf{W}_{wi}\mathbf{w}_t + \mathbf{W}_{hi}\mathbf{h}_{t-1}) \tag{1}$$

$$\mathbf{f}_t = \sigma(\mathbf{W}_{wf}\mathbf{w}_t + \mathbf{W}_{hf}\mathbf{h}_{t-1}) \tag{2}$$


$$\mathbf{o}_t = \sigma(\mathbf{W}_{wo}\mathbf{w}_t + \mathbf{W}_{ho}\mathbf{h}_{t-1}) \tag{3}$$

$$\hat{\mathbf{c}}_t = tanh(\mathbf{W}_{wc}\mathbf{w}_t + \mathbf{W}_{hc}\mathbf{h}_{t-1}) \tag{4}$$

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \hat{\mathbf{c}}_t \tag{5}$$

$$\mathbf{h}_t = \mathbf{o}_t \odot tanh(\mathbf{c}_t) \tag{6}$$

(Hochreiter and Schmidhuber, 1997)

SC-LSTM (2/4)

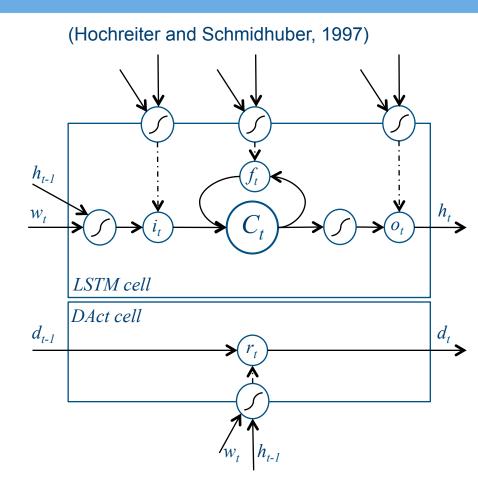
Original LSTM cell

$$\mathbf{i}_t = \sigma(\mathbf{W}_{wi}\mathbf{w}_t + \mathbf{W}_{hi}\mathbf{h}_{t-1}) \tag{1}$$

$$\mathbf{f}_t = \sigma(\mathbf{W}_{wf}\mathbf{w}_t + \mathbf{W}_{hf}\mathbf{h}_{t-1}) \tag{2}$$

$$\mathbf{o}_t = \sigma(\mathbf{W}_{wo}\mathbf{w}_t + \mathbf{W}_{ho}\mathbf{h}_{t-1}) \tag{3}$$

$$\hat{\mathbf{c}}_t = tanh(\mathbf{W}_{wc}\mathbf{w}_t + \mathbf{W}_{hc}\mathbf{h}_{t-1}) \tag{4}$$


$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \hat{\mathbf{c}}_t \tag{5}$$

$$\mathbf{h}_t = \mathbf{o}_t \odot tanh(\mathbf{c}_t) \tag{6}$$

DA cell

$$\mathbf{r}_t = \sigma(\mathbf{W}_{wr}\mathbf{w}_t + \alpha \mathbf{W}_{hr}\mathbf{h}_{t-1}) \tag{7}$$

$$\mathbf{d}_t = \mathbf{r}_t \odot \mathbf{d}_{t-1} \tag{8}$$

SC-LSTM (3/4)

Original LSTM cell

$$\mathbf{i}_t = \sigma(\mathbf{W}_{wi}\mathbf{w}_t + \mathbf{W}_{hi}\mathbf{h}_{t-1}) \tag{1}$$

$$\mathbf{f}_t = \sigma(\mathbf{W}_{wf}\mathbf{w}_t + \mathbf{W}_{hf}\mathbf{h}_{t-1}) \tag{2}$$

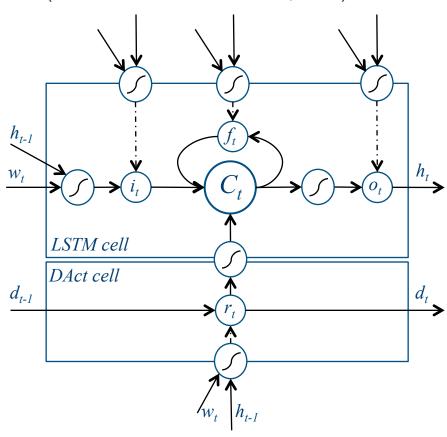
$$\mathbf{o}_t = \sigma(\mathbf{W}_{wo}\mathbf{w}_t + \mathbf{W}_{ho}\mathbf{h}_{t-1}) \tag{3}$$

$$\hat{\mathbf{c}}_t = tanh(\mathbf{W}_{wc}\mathbf{w}_t + \mathbf{W}_{hc}\mathbf{h}_{t-1}) \tag{4}$$

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \hat{\mathbf{c}}_t \tag{5}$$

$$\mathbf{h}_t = \mathbf{o}_t \odot tanh(\mathbf{c}_t) \tag{6}$$

DA cell


$$\mathbf{r}_t = \sigma(\mathbf{W}_{wr}\mathbf{w}_t + \alpha \mathbf{W}_{hr}\mathbf{h}_{t-1}) \tag{7}$$

$$\mathbf{d}_t = \mathbf{r}_t \odot \mathbf{d}_{t-1} \tag{8}$$

• Modify eq. (6) to

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \hat{\mathbf{c}}_t + tanh(\mathbf{W}_{dc}\mathbf{d}_t) \quad (9)$$

(Hochreiter and Schmidhuber, 1997)

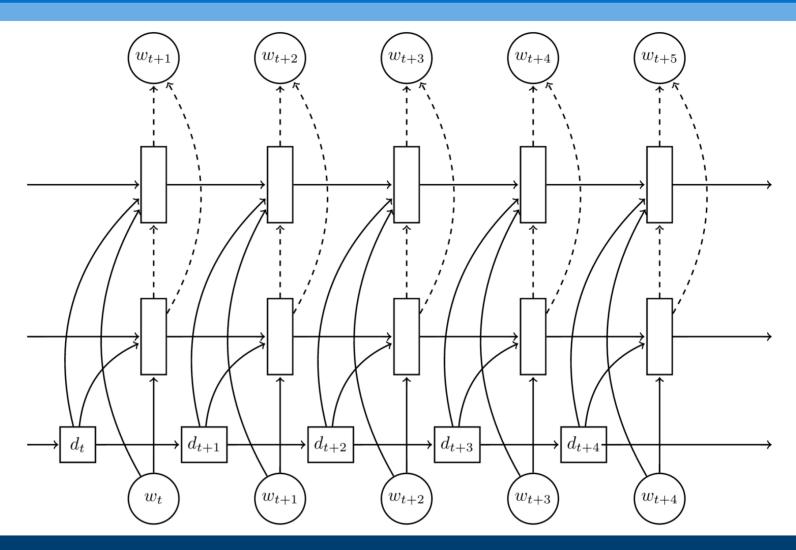
SC-LSTM (4/4)

Cost function

$$F(\theta) = \sum_{t} \mathbf{p}_{t}^{\mathsf{T}} log(\mathbf{y}_{t})$$

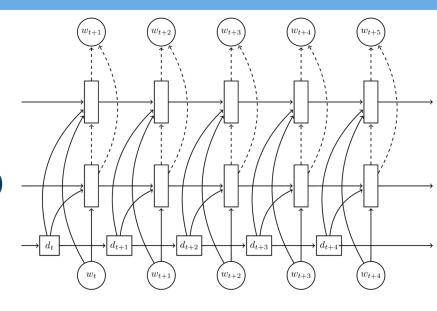
$$+ \|\mathbf{d}_{T}\|$$

$$+ \sum_{t=0}^{T-1} \eta \xi^{\|\mathbf{d}_{t+1} - \mathbf{d}_{t}\|}$$


- 1st term : cross entropy error
- 2nd term: make sure rendering all the information needed
- 3rd term: prevent undesirable gating behaviors

(Hochreiter and Schmidhuber, 1997) LSTM cell DAct cell

Outline


- SC-LSTM
- Deep Model
- Experiments
 - Automatic Evaluation
 - Human Evaluation

Deep Model (1/2)

Deep Model (2/2)

- Techniques applied
 - Skip connection (Graves et al 2013)
 - RNN dropout (Srivastava et al 2014)

Gating Equation is modified

$$\mathbf{r}_t = \sigma(\mathbf{W}_{wr}\mathbf{w}_t + \alpha \mathbf{W}_{hr}\mathbf{h}_{t-1}) \tag{7}$$

To

$$\mathbf{r}_{t} = \sigma(\mathbf{W}_{wr}\mathbf{w}_{t} + \sum_{l} \alpha_{l} \mathbf{W}_{hr}^{l} \mathbf{h}_{t-1}^{l})$$
 (12)

Outline

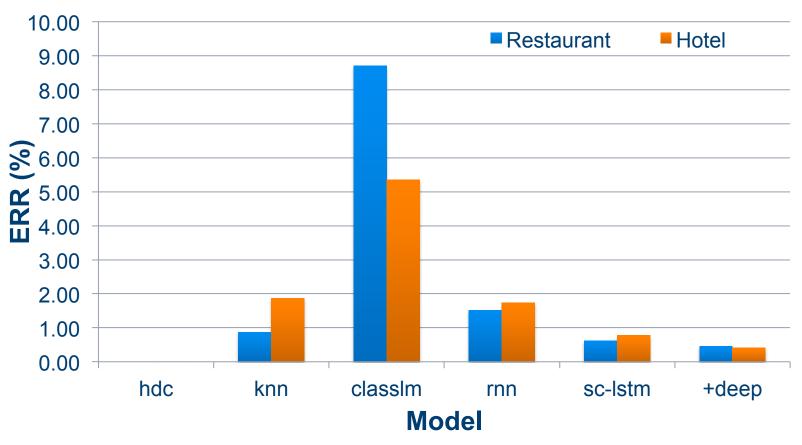
- SC-LSTM
- Deep Model
- Experiments
 - Automatic Evaluation
 - Human Evaluation

Automatic Evaluation (1/3)


- Dataset: SFX Restaurant & SFX Hotel Domains
 - 5K utterances, 3:1:1 splitting
 - 248/164 distinct acts, 2.25/1.95 # of slot per DA
- Ontologies:

	SF Restaurant	SF Hotel	
be	inform, inform_only, reject,		
act type	confirm, select, request,		
acı	reqmore, goodbye		
shared	name, type, *pricerange, price,		
	phone, address, postcode,		
	*area, *near		
specific	*food	*hasinternet	
	*goodformeal	*acceptscards	
	*kids-allowed	*dogs-allowed	

bold=binary slots, *=slots can take "don't care" value


Automatic Evaluation (2/3)

Selection scheme: 5/20

Automatic Evaluation (3/3)

Selection scheme: 5/20

Outline

- SC-LSTM
- Deep Model
- Experiments
 - Automatic Evaluation
 - Human Evaluation

Human Evaluation (1/3)

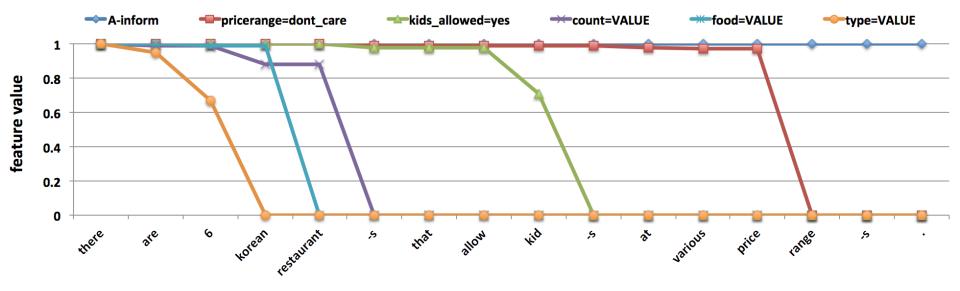
- Setting
 - Done on SFX Restaurant domain
 - Comparing classlm, rnn w/, sc-lstm and +deep

- Metrics
 - Informativeness, Naturalness, Preference

Human Evaluation (2/3)

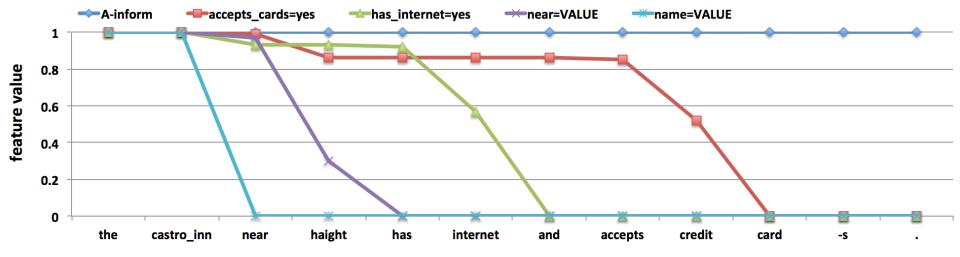
Method	Informativeness	Naturalness	
+deep	2.58	2.51	
sc-lstm	2.59	2.50	
rnn w/	2.53	2.42^{*}	
classlm	2.46**	2.45	

 $[\]overline{p} < 0.05$ ** p < 0.005


Human Evaluation (3/3)

Pref.%	classlm	rnn w/	sc-lstm	+deep
classlm	_	46.0	40.9**	37.7**
rnn w/	54.0	-	43.0	35.7 [*]
sc-lstm	59.1*	57	-	47.6
+deep	62.3**	64.3**	52.4	-

p < 0.05 ** p < 0.005



Example

Example

Conclusion

Dialogue Systems Group

Conclusion – Why RNN for NLG?

- ✓ Elegant structure for modeling <u>sequences</u>.
- Flexible architecture for adding **auxiliary information**.
- ✓ Collecting data is convenient and quick (<u>crowdsourcing</u>).
- ✓ More human-like and colloquial.
- ✓ No expert knowledge is required.
- Extensible, adaptation techniques exist.
- <u>Distributed representation</u>
- ✓ Less cost, quicker development cycle
- ✓ End-to-End trainable

Papers

- Tsung-Hsien Wen, Milica Gasic, Dongho Kim, Nikola Mrksic, Pei-Hao Su, David Vandyke, and Steve Young. 2015. Stochastic language generation in dialogue using recurrent neural networks with convolutional sentence reranking. In *Proceedings of SIGdial*. Association for Computational Linguistics.
- Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke, and Steve Young. 2015. Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems. To be appear In Proceedings of EMNLP. Association for Computational Linguistics.

Reference

- Amanda Stent, Matthew Marge, and Mohit Singhai. 2005. Evaluating evaluation methods for generation in the presence of variation. In Proceedings of CICLing 2005.
- Alice H. Oh and Alexander I. Rudnicky. 2000. Stochastic language generation for spoken dialogue systems. In Proceedings of the 2000 ANLP/NAACL Workshop on Conversational Systems.
- Tomas Mikolov, Martin Karafit, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. 2010. Recurrent neural network based language model. In Proceedings on InterSpeech.
- Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional neural network for modelling sentences. Proceedings of the 52nd Annual Meeting of ACL.

Reference

- Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long short-term memory. Neural Computation.
- Alex Graves. 2013. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850.
- Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research*.

Thank you! Questions?

This project is supported by Toshiba Research Europe Ltd, Cambridge Research Laboratory.

Dialogue Systems Group