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The	two	paradigms
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M:	Hello,	welcome	to	the	Cambridge	dialogue	system,	What	kind	of	food	would	you	like?	
H:		Yeah	I	want	to	find	a	restaurant	that	serves	European	food.	
M:	Hotel	du	Vin	and	Bistro	is	a	nice	place.	It	serves	European	food.	
H:		Uh	what	is	the	address	and	phone	number?	
M:	Hotel	du	Vin	and	Bistro	is	a	nice	place.	Their	address	is	XXX	and	their	phone	is	YYY.	
H:		Thank	you	goodbye.	
M:	Thank	you	for	using	this	system.	

A:	How	old	are	you	?	
B:	I’m	16.	Why	are	you	asking	?	
A:	I	thought	you	were	12.	
B:	What	made	you	think	so	?	
A:	I	don’t	know	what	you	are	talking	about.	
B:	You	don’t	know	what	you	are	saying.	

[Su	et	al,	2016]


[Li	et	al,	2016]




The	two	paradigms
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¤  Task-Oriented	Dialogue	Systems	
¤  Goal-oriented	
¤  Require	precise	understanding,	hard	to	collect	data.	
¤  Modular,	highly	handcraced,	restricted	ability,	but	meaningful/

useful	systems.	
¤  Chat-based	ConversaLonal	Agents	

¤  Chit-chat	(non-goal).	
¤  Vast	amount	of	data	(but	probably	not	helpful).	
¤  End-to-end,	highly	data-driven,	but	meaningless/inappropriate	

responses,	unreliable	systems.	

¤  Can	we	train	a	useful	(complete	tasks)	dialogue	system	
directly	from	data?	

¤  How	can	we	collect	the	data	to	train	this	model?
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Can												I										have				<v.food>				

				<v.name>	serves		great			<v.food>						.	


A	Network-based	End-to-End	Trainable	Task-Oriented	Dialogue	System,	Wen	et	al,	2016


DelexicalisaLon




Intent	Network


Can												I										have				<v.food>				


GeneraLon	Network

				<v.name>	serves		great			<v.food>						.	


zt


Seq2Seq


A	Network-based	End-to-End	Trainable	Task-Oriented	Dialogue	System,	Wen	et	al,	2016




Can					I				have		korean


Korean					0.7	
BriLsh						0.2	
French					0.1	

…


Belief	Tracker	

Intent	Network


Can												I										have				<v.food>				


GeneraLon	Network

				<v.name>	serves		great			<v.food>						.	


zt


pt


Language		
Grounding


A	Network-based	End-to-End	Trainable	Task-Oriented	Dialogue	System,	Wen	et	al,	2016




<nil>


I	

want


Korean	

food


<nil>


Jordan	RNN-CNN	belief	trackers


1st	conv.
 2nd	conv.
 3rd	conv.
 max-pool
 avg-pool


Turn	t	
Input	layer	

Output	layer	
	

	
Hidden	layer	

Delexicalised	CNN


<nil>


I	

want


v.food	



s.food


<nil>


sentence	
representaLon


…


BriLsh		French	Korean	…		Chinese

1.3
 2.3
 9.7
 1.2
.01							.02								.85												.01


13	

[Henderson	et	al,	2014]
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Wizard	of	Oz	Data	CollecLon
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¤  Online	parallel	version	of	WOZ	on	MTurk	
¤  Randomly	hire	a	worker	to	be	user/wizard.	
¤  Task:	Enter	an	appropriate	response	for	one	turn.	
¤  Repeat	the	process	unLl	all	dialogues	are	finished.	

¤  Example	user	page	



Wizard	of	Oz	Data	CollecLon
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¤  Example	wizard	page	



CamRest676	dataset
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¤  Ontology:	
¤  Cambridge	restaurant	domain,	99	venues.	
¤  3	informable	slots:	 	area,	price	range,	food	type	
¤  3	requestable	slots: 	address,	phone,	postcode	

¤  Dataset	
¤  676	dialogues,	~2750	turns	
¤  3000	HITS,	takes	3	days,	costs	~400	USD	
¤  Data	cleaning	takes	2-3	days	for	one	person	

Link:	hfps://www.repository.cam.ac.uk/handle/1810/260970
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Experiments
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¤  Experimental	details	
¤  Train/valid/test:	3/1/1	
¤  SGD,	l2	regularisaLon,	early	stopping,	gradient	clip=1	
¤  Hidden	size	=	50,	Vocab	size:	~500		

¤  Two	stage	training:	
¤  Training	trackers	with	label	cross	entropy	
¤  Training	other	parts	with	response	cross	entropy	

¤  Decoding	
¤  Beam	search	w/	beam	width	10	
¤  Decode	with	average	word	likelihood




Response	GeneraLon	Task
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Model
 Match	(%)
 Success	(%)
 BLEU


Seq2Seq	[Sutskever	et	al,	2014]
 -
 -
 0.1718


HRED	[Serban	et	al,	2015]
 -
 -
 0.1861


Our	model	w/o	req.	trackers
 89.70
 30.60
 0.1799

Our	full	model
 86.34
 75.16
 0.2313

Our	full	model	+	afenLon
 90.88
 80.02
 0.2388




Human	evaluaLon
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Quality	assessment
 System	Comparison
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Example	dialogues
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Visualising	acLon	embedding
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Conclusion


¤  An	end-to-end	trainable	task-oriented	dialogue	
system	architecture	is	introduced.	

¤  A	complementary	WOZ	data	collecLon	is	used	to	
collect	the	training	data	(no	latency,	parallel,	cheap).	

¤  Results	show	that	it	can	learn	from	human-human	
conversaLons	and	help	users	to	complete	tasks.	

¤  Explicit	language	grounding	is	crucial,	but	what	is	
the	best	way	to	represent	semanLcs?	
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Future	Work
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¤  Latent	IntenLon	Dialogue	Models	(under	review)	
¤  Learn	an	embedded	latent	policy	from	a	supervised	

corpus.	
¤  Fine-tune	policy	using	reinforcement	learning.	

¤  MulL-domain	Neural	Dialogue	Systems	
¤  Collect	WOZ	data	across	several	domains.	
¤  Train	a	neural	controller	to	read/write	memory	tapes	

(trackers)	and	emit	responses.	
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