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Problem Definition

•  Given a meaning representation, map it into a natural language
 representation 

•  inform(type=Seven_days,food=Chinese) 

•  Seven_days serves good Chinese food.

•  What we care about? 

•  adequacy, fluency, readability, varitation (Stent et al 2005) 



Motivation 

•  Traditionally, NLG is not scalable because : 

•  Embrace a rule-based regime 

•  Highly specialised for in-domain applications 

•  Talking to NLG is not enjoyable because of :  

•  Frequent repetition of certain output forms 

•  Awkward responses that are not colloquial  



Why RNN for NLG?

•  Elegant structure for modeling sequences. 

•  Flexible architecture for adding auxiliary information. 

•  Collecting data is convenient and quick (crowdsourcing).  

•  More human-like and colloquial. 

•  No expert knowledge is required.  

•  Extensible, adaptation techniques exist. 

•  Distributed representation  

•  Less cost, quicker development cycle  

•  End-to-End trainable 



Challenges 

•  How to render the exact information we want (with the existence of
 language variation)? 

•  Adopted methods: 

•  Overgeneration – Reranking paradigm (Oh and Rudnicky 2000) 

•  Sample words from a Recurrent Generation Model output. 

•  Select top candidates based on some scoring criteria. 
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Heuristically Gated RNN Generator 
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Recurrent Generation Model (1/2)

    </s>      SLOT_NAME      serves      SLOT_FOOD        .       </s>

    </s>      Seven Days      serves           Chinese         .       </s>

delexicalisation

Inform(name=Seven_Days, food=Chinese)

0, 0, 1, 0, 0, …, 1, 0, 0, …, 1, 0, 0, 0, 0, 0…

…

dialog act 1-hot 
representation

(Mikolov et al 2010)



Recurrent Generation Model (2/2)

•  Heuristically check (exact match) whether a given slot token has been
 generated. 

•  Apply a decay factor δ<1 on generated feature values. 

•  Use features to configure the network NOT to re-generate slots that
 have already generated.  

•  Binary slots and don’t care values cannot be handled. 

Feature  
value	 </s>	 SLOT_NAME	 serves	 SLOT_FOOD	 .	 </s>	

NAME	 1	 1	 δ	 δ2 δ3 δ4 

FOOD	 1	 1	 1	 1	 δ	 δ2 



•  ERR: # of missing/redundant slots 

•  BLEU: BLEU-4 against multiple references 

Recurrent Generation Model (3/3)
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Convolutional Semantic Reranker (1/2)

•  Designed to handle : 

•  Binary slots:  ALLOW_KID=yes/no 

•  “don’t care” values: AREA=dont_care 

•  Use CNN for semantic validation



Convolutional Semantic Reranker (2/2)

</s>	

SLOT_ 
NAME	

serves	

SLOT_ 
FOOD	

.	

</s>	

inform	

confirm	

request	

SLOT_NAM
E=Value	

SLOT_NAM
E=NIL	

SLOT_FOO
D=Value	

SLOT_FOO
D=NIL	

ALLOW_KID 
=Yes	

ALLOW_KID 
=No	

ALLOW_KID
=NIL	

Target dialogue act:  inform(name=Seven_days, food=Chinese) 
Generated candidate:  </s> SLOT_NAME serves SLOT_FOOD . </s>

1-D convolutional layer 
with multiple feature maps

Average pooling 
over time

Sentence representation 
over delexicalised corpus

Fully connected layer for 
classifying dialogue act

(Kalchbrenner et al., 2014)



Convolutional Semantic Reranker (3/3)
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Backward RNN Reranker

•  Motivation: 

•  Considering backward context can reduce grammatical errors.  

•  Ex.  “Seven Days is an exceptional restaurant.” 

•  Integrating information from both directions is tricky. 

•  The generation procedure is sequential in one direction only. 

•  Alternative => train an RNN in reverse direction and use it for rescoring. 



Backward RNN Reranker (3/3)
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Setup

•  Data collection: 

•  SFX Restaurant domain: 8 system act types, 12 slots (1 is binary). 

•  Workers recruited from Amazon MT 

•  Asked to generate system responses given a dialogue act. 

•  Result in ~5.1K utterances, 228 distinct acts  

•  Training:   BPTT, L2 regularisation, SGD w/ early stopping. 

      train/valid/test: 3/1/1, data up-sampling 
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Automatic Evaluation (1/2)

•  Test set:   1039 utterances, 1848 required slots. 

•  Metrics:    BLEU-4 (against multiple references), ERR(slot errors) 

•  Results averaged over 10 random initialised networks 

•  Compared with class-based LM (classlm), handcrafted generator (hdc),
 and kNN based model.



Automatic Evaluation (2/2)

BLEU hdc knn classlm rnn 

Selection 
Beam 

1/20 0.440 0.591 0.757 0.777 

5/20 - - 0.678 0.712 

ERR hdc knn classlm rnn 

Selection 
Beam 

1/20 0 17.2 47.8 0 

5/20 - - 104.6 3.1 
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Human Evaluation (1/3)

•  Setup 

•  Judges (~60) recruited from Amazon MT. 

•  Asked to evaluate two system responses pairwise. 

•  Comparing handcrafted (hdc), RNN top-1 (rnn1), RNN sample from
 top-5 (rnn5), and class-based LM sampled from top-5 (classlm5) . 

•  Metrics: 

•  Informativeness, Naturalness (rating out of 5) 

•  Preference



Human Evaluation (2/3)

Metrics	 hdc	 rnn1	 hdc	 rnn5	

Info.	 3.75	 3.81	 3.85	 3.93*	
Nat.	 3.58	 3.74**	 3.57	 3.94**	
Pref.	 44.8%	 55.2%*	 37.2%	 62.8%**	

Metrics	 rnn1	 rnn5	 classlm5	 rnn5	

Info.	 3.75	 3.72	 4.02	 4.15%*	
Nat.	 3.67	 3.58	 3.91	 4.02	
Pref.	 47.5%	 52.5%	 47.1%	 52.9%	

*=p<.05, **<.005
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Human Evaluation (3/3)



A Brief Summary

•  RGM learns generation decisions from corpus. 

•  No rules, grammars, semantic alignments, or heavy feature engineering
 are required.  

•  Can we do better? 

•  No heuristic rules for gates. 

•  Direct control of generating arbitrary slot-value pairs. 

•  Better performance.



Part 2   
Semantically Controlled LSTM Generator 
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SC-LSTM (1/4)

•  Original LSTM cell 

 LSTM cell 

Ctit

ft

ot
htwt

ht-1

(Hochreiter and Schmidhuber, 1997)



SC-LSTM (2/4)

•  Original LSTM cell 

 

•  DA cell DAct cell

LSTM cell 
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(Hochreiter and Schmidhuber, 1997)



SC-LSTM (3/4)

•  Original LSTM cell 

 

•  DA cell 

•  Modify eq. (6) to

DAct cell

LSTM cell 
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(Hochreiter and Schmidhuber, 1997)



SC-LSTM (4/4)

•  Cost function 

•  1st term : cross entropy error 

•  2nd term: make sure rendering all the
 information needed 

•  3rd term: prevent undesirable gating
 behaviors 

DAct cell

LSTM cell 
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Deep Model (1/2)



Deep Model (2/2)

•  Techniques applied 

•  Skip connection (Graves et al 2013) 

•  RNN dropout (Srivastava et al 2014) 

•  Gating Equation is modified 

•  To 
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Automatic Evaluation (1/3)

•  Dataset: SFX Restaurant & SFX Hotel Domains 

•  5K utterances, 3:1:1 splitting 

•  248/164 distinct acts, 2.25/1.95 # of slot per DA 

•  Ontologies: 



Automatic Evaluation (2/3)

Selection scheme : 5/20
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Automatic Evaluation (3/3)

Selection scheme : 5/20
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Human Evaluation (1/3)

•  Setting 

•  Done on SFX Restaurant domain 

•  Comparing classlm, rnn w/, sc-lstm and +deep 

•  Metrics 

•  Informativeness, Naturalness, Preference



Human Evaluation (2/3)



Human Evaluation (3/3)
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Conclusion 
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Conclusion – Why RNN for NLG?

•  Elegant structure for modeling sequences. 

•  Flexible architecture for adding auxiliary information. 

•  Collecting data is convenient and quick (crowdsourcing).  

•  More human-like and colloquial. 

•  No expert knowledge is required.  

•  Extensible, adaptation techniques exist. 

•  Distributed representation  

•  Less cost, quicker development cycle 

•  End-to-End trainable 

✔

✔

✔

✔

✔

✔
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Thank you! Questions? 
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