

Beyond Conditional LM: Neural Network Language Generation for Dialogue Systems

Heriot Watt University Seminar, 24/05/2016 Tsung-Hsien (Shawn) Wen and Steve Young

Outline

- Intro
- Multi-domain Neural NLG
- Neural Dialogue System
- Conclusion

Outline

- Multi-domain Neural NLG
- Neural Dialogue System
- Conclusion

RNN Language Modeling

Conditional RNN LM

Many things could be a condition LM

Karpathy et al, 2015

Outline

- Intro
- Multi-domain Neural NLG
- Neural Dialogue System
- Conclusion

Neural NLG

delexicalisation

(Wen et al, 2015)

Domain Adaptation

- Adaptation for NN?
 - Continue to train the model on adaptation dataset
- Parameters are shared on LM part of the network
 - But not for the DA weights
 - New slot-value pairs can only be learned from scratch

Data counterfeiting

- Produce pseudo target domain data by replacing source domain slot-values pairs with target domains slot-value pairs.
- Procedure:

An example realisation in laptop (source) domain:

```
Zeus 19 is a heavy laptop with a 500GB memory

delexicalisation

<NAME-value> is a <WEIGHT-value> <TYPE-value> with a <MEMEORY-value> <MEMORY-slot>

counterfeiting

<NAME-value> is a <FAMILY-value> <TYPE-value> with a <SCREEN-value> <SCREEN-slot>
```

A possible realisation in TV (target) domain:

Apollo 73 is a U76 television with a 29-inch screen

Data counterfeiting

- Choice of target domain slots?
 - The realisation should be similar to the source one.
 - Simple case: based on their functional class.
 - Informable, requestable, and binary slots.
 - Example:

	Laptop	Television
Informable	family, price_range, battery_rating,	family, price_range, screen_size_range,
Requestable	price, memory,	price, resolution,
Binary	is_for_business	has_usb_port

Laptop/TV dataset

- A more difficult dataset than restaurant/hotel
 - Permutate all possible DAs, ~13K/7K
 - Only a few example utterances for each DA

	Laptop	Television	
informable slots	family, *pricerange, batteryrating, driverange, weightrange, isforbusinesscomputing	family, *pricerange, screensizerange, ecorating, hdmiport, hasusbport	
requestable slots	*name, *type, *price, warranty, battery, design, dimension, utility, weight, platform, memory, drive, processor	*name, *type, *price, resolution, powerconsumption, accessories, color, screensize, audio	
act type	*inform, *inform_only_match, *inform_on_match, inform_all, *inform_count, inform_no_info, *recommend, compare, *select, suggest, *confirm, *request, *request_more, *goodbye		

bold=binary slots, *=overlap with SF Restaurant and Hotel domains, all informable slots can take "dontcare" value

Data counterfeiting - Results

Discriminative Training

Explore model capacity and correct it.

• DT cost function:

$$F(\theta) = -\mathbb{E}[L(\theta)] \qquad \qquad \Omega \text{: candidate sentence} \\ = -\sum_{\Omega \in Gen(d_i)} p_{\theta}(\Omega|d_i) L(\Omega, \Omega_i) \qquad \text{di: dialogue act} \\ \text{L(.): scoring function}$$

Discriminative Training - Results

Outline

- Intro
- Multi-domain Neural NLG
- Neural Dialogue System
- Conclusion

Traditional Dialogue Systems

Neural Dialogue Systems

Jordan RNN-CNN belief trackers

Wizard of Oz Data Collection

- Online parallel version of WOZ on MTurk
 - Randomly hire a worker to be user/wizard.
 - Ask them to enter an appropriate response for one turn (following some instructions).
 - Repeat the process until all dialogues are finished.
- Example user page

Task 02004: You are looking for and it should serve gastropub food. You don't care about the price range. You want to know the address.

Info Desk: Hello, welcome to the Cambridge restaurant system. You can ask for restaurants by area, price range or food type. How may I help you? Customer: want a gastropub food Info Desk: There are 4 restaurants serving gastropub food, what price range do you want?			
Next turn!			
Customer: (Your response)			
I dont care about the price range, just give me the address please. Submit the HIT			

Wizard of Oz Data Collection

Example wizard page

Info Desk : Hello , welcome to the Cambridge restaurant system . You can ask for restaurants by area, price range or food type . How may I help you ? Customer : i want a gastropub food Info Desk : There are 4 restaurants serving gastropub food, what price range do you want ? Customer : i dont care
Please modiffy the following answers based on the latest customer response: • What does user want? What is the food type the user wants? What is the area the user wants? What is the price range the user wants? • What does user ask? Is the user asking for food type of an offered venue? Is the user asking for price range of an offered venue? No ‡ Is the user asking for protocode of an offered venue? Is the user asking for postcode of an offered venue? Is the user asking for postcode of an offered venue? No ‡ Is the user asking for postcode of an offered venue? No ‡ Is the user asking for postcode of an offered venue? No ‡ Is the user asking for postcode of an offered venue? No ‡ Is the user asking for postcode of an offered venue? No ‡
Info Desk : (Your response) I would recommend backstreet bistro, a great gastropub restaurant in the centre. do you want their phone number? Submit the HIT

Name	Food	Area	Price Range	Phone	Address	Postcode
backstreet bistro	gastropub	centre	expensive	01223 306306	2 Sturton Street City Centre	C.B 1, 2 Q.A
royal standard	gastropub	east	expensive	01223 247877	290 Mill Road City Centre	C.B 1, 3 N.L
the cow pizza kitchen and bar	gastropub	centre	moderate	01223 308871	Corn Exchange Street	C.B 2, 3 Q.F
the slug and lettuce	gastropub	centre	expensive	-	34 - 35 Green Street	C.B 2, 3 J.U
nil	gastropub	nil	nil	nil	nil	nil
Showing 1 to 4 of 4 entries (filtered from 110 total entries) Next						

Data Statistics

Ontology:

- Cambridge restaurant domain, 99 venues.
- 3 informable slots, 6 requestable slots

Dataset

- 676 dialogues, ~2750 turns
- 3000 HITS, takes 3 days, costs ~400 USD
- Data cleaning takes 2-3 days for one person

Experiments

- Experimental details
 - Train/valid/test: 3/1/1
 - SGD, l2 regularisation, early stopping, gradient clip=1
 - Hidden size = 50, Vocab size: ~500
- Two stage training:
 - Training trackers with label cross entropy
 - Training other parts with response cross entropy
- Decoding
 - Beam search w/ beam width 10
 - Decode with average word likelihood

Human evaluation

Quality assessment

Metric	N2N
Success	98%
Comprehension Naturalness	4.11 4.05
# of dialogues:	245

System Comparison

N2N	Modular	Tie
96.95%	95.12%	-
3.95	4.54	-
46.95^{*}	25.61	27.44
45.12*	21.95	32.93
50.00^{*}	24.39	25.61
43.90*	25.61	30.49
	96.95% 3.95 46.95* 45.12* 50.00*	96.95% 95.12% 3.95 4.54 46.95* 25.61 45.12* 21.95 50.00* 24.39

^{*} p < 0.005, # of comparisons: 164

Example dialogues

Human : Restaurant in any area that serves Vietnamese food

Machine : thanh binh serves vietnamese food type, is there anything else i can help you with?

Human : What is the phone number and post code

Machine : the number is 01223 362456 and the area code is c.b 3, 0 a.f. is there anything else i can do for you?

Human : Good bye

Machine : thank you for using the cambridge restaurant system.

Human : Hi, I'm hungry for some Indonesian food

Machine : i am sorry, there are no indonesian restaurants. would you like a different food?

Human : Oh no. How about Indian?

Machine : there are 9 restaurants serving indian types of food . do you have a preference on side of town?

Human : East side please

Machine : sitar tandoori is a indian restaurant in the east side of town . would you like their information ?

Human : Yes, the address and phone number please

Machine : sitar tandoori is located at 43 high street cherry hinton cherry hinton and their phone number is 01223 249955.

Human : Okay, thank you

Machine : thank you, goodbye.

Example dialogues

Human : hello

Machine : what cuisine would you like ?

Human : afghan

Machine : i am sorry , there are no afghan restaurants . would you like something else ?

Human : korean

Machine : little seoul serves korean food, it is located at 108 regent street city centre.

Human : is it expensive?

Machine : little seoul serves korean food and is in the expensive price range.

Human : what area is that

Machine : little seoul is located in the centre area of town . would you like their number ?

Human : yes

Machine : the telephone number is 01223 308681 . is there anything else i can help you with today ?

Human : no goodbye

Machine : thank you for using the cambridge restaurant system, goodbye.

Visualising action embeddings

Outline

- Intro
- Multi-domain Neural NLG
- Neural Dialogue System
- Conclusion

Conclusion

- NN-based conditional LM is widely applied.
 - Generation based on dialogue act representation.
 - Generation based on the entire dialogue context.

 Achieve domain extension by data counterfeiting and discriminative training.

 Develop an end-to-end task oriented dialogue system by collecting WOZ data and JUST training it!

Papers

- Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke, and Steve Young. Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems. In Proceedings of EMNLP 2015.
- Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina M.R. Barahona, Pei-Hao Su, David Vandyke, and Steve Young. Mutidomain Neural Language Generation for Spoken Dialogue Systems. In Proceedings of NAACL-HLT 2016.
- Tsung-Hsien Wen, David Vandyke, Nikola Mrksic, Milica Gasic, Lina M.R. Barahona, Pei-Hao Su, Stefan Ultes, and Steve Young. A Network-based End-to-End Trainable Task-oriented Dialogue System. arXiv preprint: 1604.04562 2016.

Selected References

- Tomas Mikolov, Martin Karafit, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. Recurrent neural network based language model. In Proceedings on InterSpeech 2010.
- Sepp Hochreiter and Jurgen Schmidhuber. Long shortterm memory. Neural Computation 1997.
- Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural Networks. In Proceedings of NIPS 2014.
- Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descriptions. In Proceedings of CVPR 2015.

Thank you! Questions?

Tsung-Hsien Wen is supported by a studentship funded by Toshiba Research Europe Ltd, Cambridge Research Laboratory

SC-LSTM

Original LSTM cell

$$\mathbf{i}_{t} = \sigma(\mathbf{W}_{wi}\mathbf{w}_{t} + \mathbf{W}_{hi}\mathbf{h}_{t-1})$$

$$\mathbf{f}_{t} = \sigma(\mathbf{W}_{wf}\mathbf{w}_{t} + \mathbf{W}_{hf}\mathbf{h}_{t-1})$$

$$\mathbf{o}_{t} = \sigma(\mathbf{W}_{wo}\mathbf{w}_{t} + \mathbf{W}_{ho}\mathbf{h}_{t-1})$$

$$\hat{\mathbf{c}}_{t} = \tanh(\mathbf{W}_{wc}\mathbf{w}_{t} + \mathbf{W}_{hc}\mathbf{h}_{t-1})$$

$$\mathbf{c}_{t} = \mathbf{f}_{t}\odot\mathbf{c}_{t-1} + \mathbf{i}_{t}\odot\hat{\mathbf{c}}_{t}$$

$$\mathbf{h}_{t} = \mathbf{o}_{t}\odot\tanh(\mathbf{c}_{t})$$

DA cell

$$\mathbf{r}_{t} = \sigma(\mathbf{W}_{wr}\mathbf{w}_{t} + \mathbf{W}_{hr}\mathbf{h}_{t-1})$$
$$\mathbf{d}_{t} = \mathbf{r}_{t} \odot \mathbf{d}_{t-1}$$

Modify Ct

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \hat{\mathbf{c}}_t + \tanh(\mathbf{W}_{dc} \mathbf{d}_t)$$

(Hochreiter and Schmidhuber, 1997)

Visualization

Results

Human Evaluation

Method	Informativeness	Naturalness	
sc-lstm	2.59	2.50	
classlm	2.46**	2.45	

p < 0.05 * p < 0.005

Human Evaluation

Method	TV to Laptop		laptop to TV		
	Info.	Nat.	Info.	Nat.	
scrALL	2.64	2.37	2.54	2.36	
DT-10%	2.52**	2.25**	2.51	2.19**	
ML-10%	2.51**	2.22**	2.45**	2.22**	
scr-10%	2.24**	2.03**	2.00**	1.92**	

* p <0.05, ** p <0.005

• scrALL : train from scratch with 100% ID data.

• scr-10% : train from scratch with 10% ID data.

ML-10% : data counterfeiting + ML training on 10% ID data.

DT-10% : data counterfeiting + DT training on 10% ID data.