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Outline


•  Evaluation Metrics 

•  Traditional Approaches 
–  Template-based  

–  Tree-based 

•  Language Modeling for NLG 
–  Class-based language model 

–  Phrased-based Dynamic Bayesian Network 

•  Long Short-term Memory for NLG 
–  Vanishing gradient problem and LSTM 

–  Semantically conditioned LSTM for NLG 
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Evaluating NLG


•  What makes a generator a good generator? 

•  Aspects: [Stent et al, 2005] 

–  Adequacy  :  Correct meaning 

–  Fluency  :  Linguistic fluency  

–  Readability  :  Fluency in the dialogue context 

–  Variation  :  Multiple realisations for the same concept 

•  However, none of the above is trivial! 
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BLEU score [Papineni et al, 2002]


•  Evaluating similarity between paired sentences (n-gram match). 

•  The gap between human perception and automatic metrics. 

 

•  Real user trial is always the best way to evaluate NLG. 

 

[Stent	
  et	
  al,	
  2005]


Correla'on	
  
 Adequacy
 Fluency


BLEU
 0.388
 -­‐0.492
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Template-based NLG


•  Define a set of rules to map semantics to utterances. 

•  Pros :  

–  simple, error-free(usually), easy-control 

•  Cons:  

–  time-consuming, rigid, not scalable 
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confirm()	
   	
  “Please	
  tell	
  me	
  more	
  about	
  the	
  product	
  your	
  are	
  looking	
  for.”	
  
confirm(area=$V) 	
  “Do	
  you	
  want	
  somewhere	
  in	
  the	
  $V?”	
  
confirm(food=$V) 	
  “Do	
  you	
  want	
  a	
  $V	
  restaurant?”	
  
confirm(food=$V,area=$W) 	
  “Do	
  you	
  want	
  a	
  $V	
  restaurant	
  in	
  the	
  $W.”	
  

…	
  



Trainable generator [Walker et al, 2002]


•  Divide the problem into a pipeline, 

 

 

•  Apply machine learning to sentence plan ranker. 

Sentence	
  	
  
Planning	
  
Generator


Inform(	
  
	
  	
  	
  	
  name=Z_House,	
  
	
  	
  	
  	
  price=cheap	
  
)


Z	
  House	
  is	
  a	
  	
  
cheap	
  restaurant.


Sentence	
  	
  
Planning	
  
Ranker


Surface	
  
Realiser
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Sentence Plan Generator [Walker et al,2002]


•  Text plan (Dialogue Act): 

•  Example sentence plan: 
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Sentence Plan Ranker [Walker et al,2002]


•  Frame it as an ML problem using RankBoost [Freund et al, 1998] 

•  Extracting features from trees using indicator function fi, 

–  Traversal features, ancestor features, leaf features, … etc. size 3291.  

 

–  αi are parameters to learn. 

–  x,y are sp-trees labeled with user preference. 

–  D is the set of sp-trees regarding to that text plan (DA). 
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Other similar approaches 


 

 

•  Learning sentence planning generation rules. [Stent et al, 2009] 

•  Statistical surface realisers. [Dethlefs et al, 2013] 

•  Pros:  

–  Can generate sentences with complex linguistic structures. 

•  Cons: 

–  Many rules, heavily engineered.  
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Class-based LM for NLG [Oh&Rudnicky, 2000]


•  Language Modeling 

•  Class-based LM 

•  Decoding 

Classes:	
  
inform_area	
  
inform_address	
  
inform_phone	
  
…	
  
request_area	
  
request_postcode	
  
…	
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Class-based LM for NLG [Oh&Rudnicky, 2000]


•  Generation process 

–  Generate utterances by sampling words from a particular class language model 

in which the dialogue act belongs to. 

–  Re-rank utterances according to scores. 

•  Pros: no complicated rules, easy to implement, easy to understand. 

•  Cons: inefficient, error-prone 
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engineered


•  Phrase-based generation using Dynamic Bayesian Network (DBN)  

Phrase-based NLG [Mairesse et al, 2010]
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Inform(type=	
  restaurant,	
  name=Charlie	
  Chan,	
   	
   	
  
	
  	
  	
  	
  	
  food=chinese,	
  near=Cineworld,	
  area=centre)
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•  Pros:   

–  Computationally more efficient.  

–  Better performance 

•  Cons: 

–  A lot of effort involved in data collection : semantic alignments 

Phrase-based NLG [Mairesse et al, 2010]
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•  RNN as language generator 

–  Natural model for modeling sequences 

–  Long-term dependencies 

–  Flexible to conditioned on auxiliary  inputs 

•  Long-term dependencies in NLG? 

–  Example: The restaurant (in the north) is a nice Chinese place. 

Can we do better ?
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RNN & Vanishing gradient [Pascanu et al,2013]
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•  Sigmoid gates 

•  Proposed cell value 

•  Update cell and hidden layer 

Long Short-term Memory  
[Hochreiter and Schmidhuber, 1997]
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•  How it prevents vanishing gradient problem? 

–  Consider memory cell, where recurrence actually happens 

–  We can back-propagate the gradient by chain rule. 

–  If ft  maintains a value of 1, gradient is perfectly propagated. 

Long Short-term Memory  
[Hochreiter and Schmidhuber, 1997]
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RNN Language Model for NLG [Wen et al,2015a]
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Semantic Conditioned LSTM [Wen et al, 2015b]
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Learned alignments
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Results
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More Examples
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Conclusion


•  Evaluating NLG is hard. The best way is human evaluation.  

•  Tree-based NLG is a highly linguistically motivated approach. By introducing 
machine learning in the pipeline enables the model to learn from data. 

•  Language Modeling casts NLG as a sequential prediction problem. Both 
word-based and phrase-based approaches were introduced. 

•  RNN is a sequential model that can theoretically model very long-term 
dependencies, but in practice it suffers from the vanishing gradient problem. 

•  LSTM overcomes vanishing gradient by sophisticated gating mechanism. 
The same idea was applied to NLG resulting in semantically conditioned-
LSTM, a generator that can learn realisation and semantic alignments jointly. 

24




References


•  Alice H. Oh and Alexander I. Rudnicky. Stochastic language 
generation for spoken dialogue systems. NAACL Workship on 
Conversational Systems 2000. 

•  F. Mairesse, M. Gasic, F. Jurcicek, S. Keizer, J. Prombonas, B. 
Thomson, K. Yu and S. Young. Phrase-based Statistical Language 
Generation using Graphical Models and Active Learning. ACL 2010 

•  Razvan Pascanu, Tomas Mikolov, Yoshua Bengio. On the difficulty 
of training recurrent neural networks. ICML 2013. 

•  Tsung-Hsien Wen, Milica Gasic , Nikola Mrksic, Pei-Hao Su, David 
Vandyke, and Steve Young. Semantically Conditioned LSTM-based 
Natural Language Generation for Spoken Dialogue Systems. In 
Proceedings of EMNLP 2015. 

25



