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l  Basic	concepts	and	techniques	in	DL	for	NLG	
l  Recent	progress	of	DL	in	NLG-related	topics


Part	I:	NLG	Overview
2	



NLG	101
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¤  Mapping	MR(meaning	representa2on)	->	NL	
¤  inform(name=Seven_Days,	food=Chinese)	
¤  Seven	Days	is	a	nice	Chinese	restaurant.	

¤  Evalua2on	
¤  Automa2c	metrics	such	as	BLEU	[Papineni	et	al,	2002]	

¤  Human	Evalua2on		

[Stent	et	al,	2005]


Correla*on	
 Adequacy
 Fluency


BLEU
 0.388
 -0.492




Template-based	NLG
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¤  Define	a	set	of	rules	to	map	MR	to	NL	
¤  Pros:	simple,	error-free,	easy	to	control	
¤  Cons:	2me	consuming,	scalability	

confirm()	 	“Please	tell	me	more	about	the	product	your	are	looking	for.”	
confirm(area=$V) 	“Do	you	want	somewhere	in	the	$V?”	
confirm(food=$V) 	“Do	you	want	a	$V	restaurant?”	
confirm(food=$V,area=$W) 	“Do	you	want	a	$V	restaurant	in	the	$W.”	

…	



Trainable	Generator	[Walker	et	al	2002]
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¤  Divide	the	problem	into	pipeline	

¤  Focus	on	applying	ML	to	sentence	plan	reranker.


Sentence		
Plan	

Generator


Inform(	
				name=Z_House,	
				price=cheap	
)


Z	House	is	a		
cheap	restaurant.


Sentence		
Plan	

Reranker


Surface	
Realiser




Follow-up	works
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¤  Sta2s2cal	sentence	plan	generator	[Stent	et	al	
2009]	

¤  Sta2s2cal	surface	realisers	[Dethlefs	et	al	2013,	
Cuayáhuitl	et	al	2014,	…]	

¤  Learn	from	unaligned	data	[Dusek	and	Jurcicek	
2015]	

¤  Pros:	can	model	complex	linguis2c	structures	
¤  Cons:	heavily	engineered,	require	domain	knowledge




Sequen2al	NLG	models
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¤  Class-based	LM	[Oh	and	Rudnicky,	2000]	
¤  Class-based	Language	Modeling	

¤  Decoding	

¤  Pros:	easy	to	implement/understand,	simple	rules	
¤  Cons:	computa2onally	inefficient	



Sequen2al	NLG	models
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¤  Phrase-based	NLG	using	DBN	[Mairesse	et	al,	2010]


engineered


Seman2c	
DBN


Phrase	
DBN


Charlie	Chan
 is	a
 Chinese
 Restaurant
 near						Cineworld								in	the								centre


engineered


eng
ine
ere
d


d
	



	



	



d
	



Inform(type=	restaurant,	name=Charlie	Chan,	 	 	 					
food=chinese,	near=Cineworld,	area=centre)




Sequen2al	NLG	models
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¤  Phrase-based	NLG	using	DBN	[Mairesse	et	al,	2010]


¤  Pros:	efficient,	good	performance	
¤  Cons:	require	seman2c	alignments
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Q	&	A
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Neural	Networks
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NN	basics
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¤  Ar2ficial	Neuron	

¤  Loss	func2on	

¤  Back-propaga2on


xj


hi
wij


input

parameter


Ac2va2on	
func2on


output


Deep


Wide


pk


tanh	or	
sigmoid
 sonmax




NN	basics
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¤  Gradient	descent	
	 xj


hi
wij


Deep


Wide


pk


tanh	or	
sigmoid
 sonmax
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3	reasons	why	DL	for	NLP/NLG	
•  Generalisa2on		
•  Context	Modeling	
•  Control




N-gram	Language	Modeling
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¤  How	likely	is	a	sentence?	
¤  N-gram	LM	

¤  Markovian	assump2on	
¤  Collect	sta2s2cs	from	a	large	corpus:	



N-gram	Language	Modeling
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¤  The	data	sparsity	problem	
¤  Vocab	size	V	
¤  Possible	n-grams		

¤  Ways	to	mi2gate:	
¤  Smoothing,	backoff	

¤  But	s2ll,	lack	of	generalisa2on	

N-gram
 logP


camel
 -2.0014


camel	is
 -2.5426


camel	is	like
 -3.4456


…
 …


alpaca
 n/a


alpaca	is	
 n/a


alpaca	is	a	
 n/a


…
 …


llama
 n/a


an	llama	
 n/a


an	llama	runs
 n/a


…




Curse	of	Dimensionality
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Photo	credit:	newsnshit




!! = softmax(!!!! + !)!

Conquer	the	Curse	of	Dimensionality	-	NNLM
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¤  Neural	Net	LM	
¤  1-of-V	encoding	for	each	word	xt-k	
¤  Distributed	word	representa2on	

¤  Nonlinear	hidden	layer	

¤  Sonmax	output	

[Bengio	et	al	2001]


cat,	dog,	is,	…




Distributed	Word	Representa2on
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¤  NNLM	generalises	to	unseen/rare	n-grams/words


[Cho	et	al	2014]
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Context	Modeling	-	RNNLM
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¤  Non	Markovian	assump2on	
¤  RNNLM	

¤  1-of-V	encoding	for	each	word	xt	
¤  Recurrent	transi2on	func2on	

¤  Sonmax	output	

¤  Read,	update,	predict!	
¤  Can	model	dependency	of	arbitrary	length


cat,	dog,	is,	…


[Mikolov	et	al	2010]
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RNN	Op2misa2on	&	Vanishing	Gradient
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h0
 h1
 h2
 h3


Output 
layer


Hidden 
layer


Input 
layer


Cost    E0  E1             E2            E3 


Jacobian		
Matrix


Ignore	proof	here.	
	
	
Vanishing	gradient	!


[Pascanu	et	al,2013]




¤  Sigmoid	gates	

¤  Proposed	cell	value	

¤  Update	cell	and	hidden	layer


Learning	Long-term	Dependency	-	LSTM
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Ct
it


ft


ot

ht
xt


xt
 ht-1
 xt
 ht-1
 xt
 ht-1


ht-1


    

[Hochreiter	and	Schmidhuber,	1997]




Learning	Long-term	Dependency	-	LSTM
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¤  How	does	it	prevent	vanishing	gradient?	
¤  Consider	memory	cell	update	

¤  We	can	back-prop	the	gradient	by	chain	rule	

¤  If	ft	maintains	a	value	of	1,	gradient	is	perfectly	
propagated.




RNNLM	Text	Genera2on	[Sutskever	et	al	2011]
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¤  The	meaning	of	life	is	…	
¤  The	meaning	of	life	is	the	tradiUon	of	the	ancient	human	

reproduc6on:	it	is	less	favorable	to	the	good	boy	for	when	to	
remove	her	bigger.	In	the	show’s	agreement	unanimously	
resurfaced.	The	wild	pasteured	with	consistent	street	forests	
were	incorporated	by	the	15th	century	BE.	In	1996	the	
primary	rapford	undergoes	an	effort	that	the	reserve	
condiUoning,	wri[en	into	Jewish	ciUes,	sleepers	to	
incorporate	the	.St	Eurasia	that	acUvates	the	populaUon.	
Mar??a	NaUonale,	Kelli,	Zedlat-Dukastoe,	Florendon,	Ptu’s	
thought	is.	To	adapt	in	most	parts	of	North	America,	the	
dynamic	fairy	Dan	please	believes,	the	free	speech	are	much	
related	to	the




RNN	handwri2ng	synthesis	[Graves,	2013]
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RNN	handwri2ng	synthesis	[Graves,	2013]
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¤  Can	we	gain	control	on	generated	content?




27	

Q	&	A




28	

The	3rd	Reason:	Control!




Integra2ng	across	modali2es	–	Condi2onal	RNN
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				</s> 																	Eat 									serves													BriUsh 										. 	


					Eat	 														serves 							BriUsh																					. 					</s>


?




Integra2ng	across	modali2es	–	Condi2onal	RNN
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¤  Text-to-Text	
¤  Sequence-to-Sequence	Learning	[Sutskever	et	al,	2014]	

¤  Grammar	as	a	foreign	language	[Vinyals	et	al,	2015]	



Integra2ng	across	modali2es	–	Condi2onal	RNN
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¤  Text-to-Text	
¤  Chinese	Poetry	Genera2on	[Zhang	and	Lapata,	2014]	



Integra2ng	across	modali2es	–	Condi2onal	RNN
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¤  Text-to-Image	[Graves,	2013]




Integra2ng	across	modali2es	–	Condi2onal	RNN
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¤  Image-to-Text	
¤  Image	cap2on	genera2on	[Karpathy	and	Li,	2015]




Short	Conclusion
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¤  I	haven’t	talked	about	“Deep	Learning	for	NLG”	yet.	

¤  But	you	know	at	least	why	DL	is	cool	for	NLP	now.	
¤  Distributed	representa*on	–	Generalisa2on	
¤  Recurrent	connec*on	–	Long-term	Dependency	
¤  Condi*onal	RNN	–	Flexibility/Crea2vity	
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Q	&	A




l  Ga2ng-based	NLG	models	
l  Awen2on-based	NLG	models	

Part	II:	NLG	models
36	



Condi2onal	RNNLM
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¤  Genera2on	condi2ons	on	MR	
¤  Represent	MR?


				</s> 																	Eat 									serves													BriUsh 										. 	


					Eat	 														serves 							BriUsh																					. 					</s>


?




RNN	Language	Generator
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				</s> 										SLOT_NAME 									serves										SLOT_FOOD 										. 	


				</s> 										 		EAT 									serves													BriUsh 										. 	


delexicalisa6on


Inform(name=EAT,	food=BriUsh)


0,	0,	1,	0,	0,	…,	1,	0,	0,	…,	1,	0,	0,	0,	0,	0…
 …


dialog	act	1-hot	
representa6on


SLOT_NAME									serves												SLOT_FOOD 				. 						</s>


(Wen et al, 2015a)

Weight	tying




Handling	Seman2c	Repe22on
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¤  Empirically,	seman2c	repe22on	is	observed.	
¤  EAT	is	a	great	bri2sh	restaurant	that	serves	bri2sh.	
¤  EAT	is	a	child	friendly	restaurant	in	the	cheap	price	

range.	They	also	allow	kids.


¤  Deficiency	in	either	model	or	decoding	(or	both)	

¤  Mi2ga2on	
¤  Post-processing	rules	[Oh	&	Rudnicky,	2000]	
¤  Ga2ng	mechanism	[Wen	et	al,	2015a	&	2015b]	
¤  Awen2on	[Mei	et	al,	2016;Wen	et	al,	2015c]	



Learning	to	Control	Gates	[Wen	et	al,	2015b]
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¤  Recap	LSTM	gates:	
¤  		
¤  xt	:	current	input	word	embedding.	
¤  ht-1:	sequence	embedding	up	to	t-1.	
¤  Learn	to	decide	whether	the	gates	should	

open/close	based	on	genera2on	history.	

¤  Can	we	do	the	same	for	learning	the	
gate	of	seman2cs	(a.k.a.	alignments).	

it


xt
 ht-1




¤  Original	LSTM	cell	

	

	

¤  DA	cell	
	

	
¤  Modify	Ct


SC-LSTM	[Wen	et	al,	2015b]


DA	cell


LSTM	cell	

Ct
it


ft


ot


rt


ht


dt
dt-1


xt


xt
 ht-1


xt
 ht-1
 xt
 ht-1
 xt
 ht-1


ht-1


Inform(name=Seven_Days,	
food=Chinese)


0,	0,	1,	0,	0,	…,	1,	0,	0,	…,	1,	0,	0,	…
 dialog	act	1-hot	
representa6on


d0
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Visualiza2on	[Wen	et	al,	2015b]
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ℒ ! = − !!! log!!
!

!

Cost	func2on	[Wen	et	al,	2015b]


¤  Cost	func2on	

¤  1st	term	:	Log-likelihood	
¤  2nd	term:	make	sure	

rendering	all	the	
informa2on	needed	

¤  3rd	term:	close	only	one	
gate	at	each	2me	step.	

DA	cell


LSTM	cell	

Ct
it


ft


ot


rt


ht


dt
dt-1


wt


wt
 ht-1


wt
 ht-1
 wt
 ht-1
 wt
 ht-1


ht-1


Inform(name=Seven_Days,	
food=Chinese)


0,	0,	1,	0,	0,	…,	1,	0,	0,	…,	1,	0,	0,	…
 dialog	act	1-hot	
representa6on


d0
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Results	[Wen	et	al,	2015b]

44	

0.68		

0.72		

0.76		

0.80		

0.84		

classlm	 h-lstm	 sc-lstm	

BLEU	

0.0%	

1.0%	

2.0%	

3.0%	

4.0%	

5.0%	

6.0%	

classlm	 h-lstm	 sc-lstm	

ERR	



45	

Awen2on	Mechanism?




Awen2ve	Cap2on	Genera2on	[Xu	et	al,	2015]

46	
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Awen2on	Mechanism	in	Neural	Networks
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¤  A	general	form	of	differen*able	awen2on:	
¤  Given	sources	s	(usually	in	vector	form),	determine	a	

distribu*on	p(s|θ)	based	on	network	parameter	θ	
and	take	the	expecta*on	over	sources:	

¤  Benefits:	
¤  Differen2able	everywhere	(back-prop).	
¤  Selec2ve	focus	on	part	of	data	that	is	important.	
¤  Create	short	path	for	gradient	flow.	
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Content-based	Awen2on
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¤  At	every	genera2on	step	t	
¤  Score	source	hj	by	

¤  Take	an	expecta2on	over	sources	

¤  Everything	is	differen2able.	Back-prop	end-to-end!


[Bahdanau	et	al,2013]




Neural	MT	[Bahdanau	et	al,2013]
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¤  Slot	&	value	embedding	

¤  Awen2ve	MR	representa2on	

¤  Modified	based	on	Mei	et	al,	2016.	
¤  Related	work:	Dusek	and	Jurcicek	2016


!ti = !! tanh(!!!!!!! +!!"!!)!
!!" = softmax(!ti)!

Awen2ve	Encoder-Decoder	for	NLG
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[Wen	et	al,2015c]




Awen2on	heat	map	[Mei	et	al	2016]
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Model	Comparison
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RNNLG


A	Benchmark	Toolkit	for	Deep	NLG




RNNLG	–	Benchmark	toolkit	for	Deep	NLG
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¤  hwps://github.com/shawnwun/RNNLG




RNNLG	–	Benchmark	toolkit	for	Deep	NLG
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¤  Summary	
¤  Implementa2on:	Python	2.7,	Theano	0.8.2,	NLTK	3.0.0	
¤  4	benchmark	datasets,	6	counterfeited	datasets.	
¤  6	baseline	models,	2	training/decoding	strategies.	

¤  Including	works	in	the	following	publica2ons:	
ü  StochasUc	Language	GeneraUon	in	Dialogue	using	Recurrent	Neural	Networks	

with	ConvoluUonal	Sentence	Reranking,	Wen	et	al,	SigDial	2015a.	
ü  SemanUcally	CondiUoned	LSTM-based	Natural	Language	GeneraUon	for	Spoken	

Dialogue	Systems,	Wen	et	al,	EMNLP	2015b.	
ü  Toward	MulU-domain	Language	GeneraUon	using	Recurrent	Neural	Networks,	

Wen	et	al,	NIPS	workshop	on	ML	for	SLU	&	Interac2on	2015c.	
ü  MulU-domain	Neural	Network	Language	GeneraUon	for	Spoken	Dialogue	

Systems,	Wen	et	al,	NAACL	2016a.	



Simple	Tutorial
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¤  Download	code	at	
hwps://github.com/shawnwun/RNNLG


¤  	Make	sure	you	have	
¤  Theano	0.8.2,	NLTK	3.0.0,	python	2.7	

¤  Tes2ng	Baselines:	
	

¤  Training	SC-LSTM:	



l  Neural	Dialogue	Models	
l  Latent	Inten2on	Dialogue	Models	

Part	III:	N2N	Dialogue	Modeling
57	



Tradi2onal	Dialogue	Systems


Speech	
Recogni2on


Language	
Understanding


Speech	
Synthesis


Dialogue	
Manager


KB


Web


Dialogue	System


Language	
Genera2on
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text	


text	


¤  Step-by-step	query	processing


Dialogue	act	

Dialogue	act	



Neural	Dialogue	Systems


Speech	
Recogni2on


Speech	
Synthesis


KB


Web


Neural	Dialogue	System
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text	


text	


	
	
	

¤  How	about	integra2ng	the	whole	thing?




A	Neural	Conversa2onal	Model
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¤  Seq2Seq

[Vinyals	and	Le,	2015]




Hierarchical	RNN	for	Dialogue	[Serban	et	al,2016]
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Other	Works
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¤  Neural	Responding	Machine	[Shang	et	al,	2015]	
¤  Diversity-Promo2ng	Decoding	[Li	et	al,	2016a]	
¤  Persona	Modeling	[Li	et	al,	2016b]	
	
¤  Issues:	

¤  Generic,	incoherent,	non-causal	responses	
¤  Cannot	achieve	goal	(no	goal)	
¤  Does	NOT	ground	conversa2on	on	knowledge.	
¤  Evalua2on	

¤  Chatbot/Open	domain	dialogue	with	grounding	is	a	
FALSE	proposi2on.	
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Neural	Dialogue	Model


A	Knowledge-Grounded	Neural	Conversa2onal	Model




Neural	Dialogue	Model
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		Can											I											have				Korean					

				Liwle	Seoul	serves			great			Korean							.	




Neural	Dialogue	Model
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		Can											I											have				<v.food>				

				<v.name>	serves			great			<v.food>							.	


Delexicalisa2on




Neural	Dialogue	Model
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Intent	Network


		Can											I											have				<v.food>				


Genera*on	Network


				<v.name>	serves			great			<v.food>							.	


ut


Seq2Seq




Neural	Dialogue	Model
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What	can				I					help
 Can					I				have		korean


Korean					0.7	
Bri2sh						0.2	
French					0.1	

…


Belief	Tracker	

Intent	Network


		Can											I											have				<v.food>				


Genera*on	Network


				<v.name>	serves			great			<v.food>							.	


ut


Belief	
Tracking




Neural	Dialogue	Model
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What	can				I					help
 Can					I				have		korean


Korean					0.7	
Bri2sh						0.2	
French					0.1	

…


Belief	Tracker	

0		0		0			…			0		1


MySQL	query:	
“Select	*	where	
food=Korean”


Database	Operator


Intent	Network


		Can											I											have				<v.food>				


Genera*on	Network


				<v.name>	serves			great			<v.food>							.	


	
	

				…	
	
	
	
	

Database


Seven	days

Curry	Prince



N
irala


Royal	Standard



Liw
le	Seuol


DB	pointer
xt


ut


qt


Database	
Accessing




Neural	Dialogue	Model
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What	can				I					help
 Can					I				have		korean


Korean					0.7	
Bri2sh						0.2	
French					0.1	

…


Belief	Tracker	

0		0		0			…			0		1


MySQL	query:	
“Select	*	where	
food=Korean”


Database	Operator


Intent	Network


		Can											I											have				<v.food>				


Genera*on	Network


				<v.name>	serves			great			<v.food>							.	


Policy	Network


	
	

				…	
	
	
	
	

Database


Seven	days

Curry	Prince



N
irala


Royal	Standard



Liw
le	Seuol


DB	pointer
xt


ut


bt


qt


Decision	
Making




Neural	Dialogue	Model
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What	can				I					help
 Can					I				have		korean


Korean					0.7	
Bri2sh						0.2	
French					0.1	

…


Belief	Tracker	

0		0		0			…			0		1


MySQL	query:	
“Select	*	where	
food=Korean”


Database	Operator


Intent	Network


		Can											I											have				<v.food>				


Genera*on	Network


				<v.name>	serves			great			<v.food>							.	


Policy	Network
 Copy	field


	
	

				…	
	
	
	
	

Database


Seven	days

Curry	Prince



N
irala


Royal	Standard



Liw
le	Seuol


DB	pointer
xt


ut


bt


qt


Post	
Processing




Neural	Dialogue	Model
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What	can				I					help
 Can					I				have		korean


Korean					0.7	
Bri2sh						0.2	
French					0.1	

…


Belief	Tracker	

0		0		0			…			0		1


MySQL	query:	
“Select	*	where	
food=Korean”


Database	Operator


Intent	Network


		Can											I											have				<v.food>				


Genera*on	Network


				<v.name>	serves			great			<v.food>							.	


Policy	Network
 Copy	field


	
	

				…	
	
	
	
	

Database


Seven	days

Curry	Prince



N
irala
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Task:	CamRest676	dataset
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¤  Cambridge	restaurant	dialogue	domain.	
¤  In-domain	human-human	conversa2on.	
¤  Users	can	look	for	restaurant	with	par2cular	food	

type,	price	range,	and	area,	and	ask	for	phone	
number,	address	and	postcode.	

¤  Including	coarse	slot-	
		value	labels	per	turn.	

¤  Evalua2on:	
¤  *Dialogue	success	
¤  BLEU		




hwps://www.repository.cam.ac.uk/
handle/1810/260970




Data	Sta2s2cs
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¤  Ontology:	
¤  Cambridge	restaurant	domain,	99	venues.	
¤  3	informable	slots:	 	area,	price	range,	food	type	
¤  3	requestable	slots: 	address,	phone,	postcode	

¤  Dataset	
¤  676	dialogues,	~2750	turns	
¤  3000	HITS,	takes	3	days,	costs	~400	USD	
¤  Data	cleaning	takes	2-3	days	for	one	person	



Response	Genera2on	Task
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Model
 Match	(%)
 Success	(%)
 BLEU


Seq2Seq	[Sutskever	et	al,	2014]
 -
 -
 0.1718


HRED	[Serban	et	al,	2015]
 -
 -
 0.1861


Our	full	model
 86.34
 75.16
 0.2313

Our	full	model	+	awen2on
 90.88
 80.02
 0.2388




Human	evalua2on
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Quality	assessment
 System	Comparison




Example	dialogues
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Example	dialogues
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Visualising	ac2on	embedding
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Short	Conclusion
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¤  Benefits	of	DL	in	complex	NLP	systems	
¤  Distributed	representa*on	–	“AGAIN”	Generalisa2on	
¤  Recurrent	connec*on	–	Learning	“RAW”	inputs	
¤  Condi*onal	RNN	–	“MULTIMODAL”	sources	

¤  DL	allows	us	to	build	complex	NLP	learning	systems	
like	never	before.	

¤  It	is	imprac2cal	to	learn	EVERYTHING	from	scratch	
¤  Figure	out	what	should	be	(shouldn’t)	learned.	
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Q	&	A
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Latent	Inten2on	Dialogue	Models

Inferring	interpretable	inten2ons	w/	latent	variable	models!




Mo2va2on	–	Inten2on	Varia2on
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¤  Query:	What	do	you	do?	
¤  Valid	responses	for	a	SWE:	

¤  I’m	a	programmer.	
¤  I	build	features	for	Gmail.	
¤  Do	you	want	to	make	a	guess?	
¤  I	don’t	want	to	tell	you.	
¤  You	can	ask	Sophie.	

¤  Inten2on	is	a	probability	distribu2on!	
¤  Sampling	as	the	decision-making!




Mo2va2on	–	An	Unified	Learning	Framework
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¤  Discrete	latent	variable	as	a	latent	POLICY!	
¤  I’m	a	programmer.	
¤  I	build	features	for	Gmail.	
¤  Do	you	want	to	make	a	guess?	
¤  I	don’t	want	to	tell	you.	
¤  You	can	ask	Sophie.	

¤  Discrete	latent	variable	as	an	interface	for	RL.	
¤  Decompose	learning	of	language	and	decision-

making,	but	s2ll,	learn	in	an	end-to-end	fashion!	
¤  An	unified	framework	for	SL,	RL,	and	UL!	

+1


-1


-1




Varia2onal	Autoencoder	(VAE)

84	

y
 y
z


Determinis2c	node		
	
	
	



Stochas2c	node	
y
z
 Tes2ng	2me


Inference	2me




Varia2onal	Autoencoder	(VAE)
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VAE	for	Summarisa2on
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Miao	and	Blunsom,	2016




Dialogue	as	a	Condi2onal	VAE

87	

y
 y
z
 Inference	2me


x


state


ac2on

response


Determinis2c	node		
	
	
	



Stochas2c	node	



Latent	Inten2on	Dialogue	Models

88	
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Reinforcement	Learning
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¤  Policy	gradient	based	RL	can	be	directly	applied:	

¤  A	simple	corpus-based	RL	se�ng	is	applied,	
¤  Swap	each	ground	truth	with	a	model	candidate	mt


¤  Receive	reward	rt	as	defined	below,	

¤  Update	model	parameters	



Corpus-based	Result
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0.761	 0.790	 0.818	

0.632	

0.846	
0.916	

0.212	 0.224	 0.240	 0.242	 0.240	
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Human	Evalua2on
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¤  Subjec2vely,	LIDM	performs	indis2nguishably	from	
the	others	->	discrepancy	due	to	a	biased	preference	
toward	greedy	policy	in	corpus-based	evalua2on.	

¤  LIDMs	can	produce	more	natural	dialogues	than	
NDM.




An	Example	Dialogue	of	LIDM
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Example	Dialogues	of	LIDM+RL
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NNDIAL


A	Toolkit	for	Goal-Oriented	Neural	Dialogue	Models




NNDIAL	–	A	Tool	for	Neural	Dialogue	Models
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¤  hwps://github.com/shawnwun/NNDIAL




NNDIAL	–	A	Tool	for	Neural	Dialogue	Models
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¤  Summary	
¤  Implementa2on:	Python	2.7,	Theano	0.8.2,	

NLTK	3.0.0	
¤  Including	CamRest676	WoZ	dataset	
¤  2	Models:	NDM	(w/	awen2on)	and	LIDM	

¤  Including	works	in	the	following	
publica2ons:	
ü  A	Network-based	End-to-End	Trainable	Task-oriented	Dialogue	

System,	Wen	et	al,	EACL,	2017.	
ü  Latent	IntenUon	Dialogue	Models,	Wen	et	al,	ICML	2017.	
ü  CondiUonal	GeneraUon	and	Snapshot	Learning	in	Neural	Dialogue	

Systems,	Wen	et	al,	EMNLP,	2016.	
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Toolkit	Naviga2on




Part	IV:	Conclusion	&	Challenge
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Conclusion	&	Challenge
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¤  The	three	pillars	of	DL	for	NLG/NLP	
¤  Distributed	representa*on	–	Generalisa2on.	
¤  Recurrent	connec*on	–	Long-term	Dependency.	
¤  Condi*onal	RNN	–	Flexibility/Crea2vity.	

¤  The	last	one	is	the	key	to	many	interes2ng	
applica2ons	in	DL	today.




Conclusion	&	Challenge
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¤  Useful	techniques	in	DL	for	NLG	
¤  Learnable	gates	
¤  Awen2on	mechanism	

	
¤  Challenges	for	Deep	NLG	

¤  Genera2ng	longer/complex	sentences.	
¤  Genera2ng	coherent	narra2ves.	
¤  Employing	latent	syntac2c	structures?	



Conclusion	&	Challenge
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¤  DL	offers	flexible	learning	models	for	dialogue	
¤  LSTM	for	response	decoding.	
¤  CNN	for	language	understanding.	
¤  MLP	for	any	arbitrary	input-output	mappings.	
¤  Discrete	latent	variable	as	a	latent	policy.	

¤  Dialogue	MUST	be	grounded!	

¤  Chatbot/Open-domain	dialogue	without	grounding	is	a	
FALSE	proposi2on.	Like	ELIZA	in	50	years	ago.	

¤  NDM	&	LIDM	show	a	promising	step	forward.	



Conclusion	&	Challenge
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¤  Challenges	for	End-to-End	Dialogue	Modeling	
¤  From	a	produce	development	perspec2ve	

¤  How	to	gain	access	to	in-domain	dialogue	corpora?	
¤  How	to	scale	systems	across	different	domains?	
¤  How	to	gain	control	over	system	behaviors?	

¤  From	an	AI	perspec2ve	
¤  What	is	the	internal	seman2c	representa2on?	
¤  How	to	learn	from	conversa2onal	cues	in	interac2ons?	
¤  How	to	acquire	new	knowledge?	
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