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NLG: Problem Definition

® Given a meaning representation, map it into natural
language utterances.

Dialogue Act Realisations

Inform(restaurant=Seven_days, food=Chinese)

Seven days is a restaurant serving Chinese.

Seven days is a Chinese restaurant.

® What do we care about?
® adequacy, fluency, readability, variation
(Stent et al 2005)



Traditional pipeline approach
S

Sentence Surface

Planning Realisation

Inform(

NP VP
name=Z_House, D/\N V/\PP Z House is a cheap
price=cheap p/\NP restaurant.
) SN
D N
Dialogue Tree-like Utterance

Act template



Problems

® Scalability

® Grammars are handcrafted.

® Require expert knowledge.
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Problems

® Boring
® Frequent repetition of outputs.
® Non-colloquial, awkward

utterances. Thank you,

good bye.

Seven Days is a nice restaurant in the expensive price range, in the north part of
the town, if you don’t care about what food they serve.
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Recurrent Generation Model
10

Inform(name=Seven_Days, food=Chinese) dialog act 1-hot
]:| representation

[ 00100,..,1,00,..,1,0,0,0,0,0...

T\®\T\®\ bt

> > >
|——> </s> SLOT _NAME serves SLOT _FOOD ) </s>
</s> Seven Days serves Chinese ) </s>
delexicalisation

RNNLM (Mikolov et al 2010)



Recurrent Generation Model
I

® Gates are controlled by exact matching of
features and generated tokens.

® Apply a decay factor 6<1 on feature values.

4 SLOT_NAME serves SLOT_FOOD : </s>

1d 1.

BENAME BFOOD

1

® Binary slots/special values need to be additionally
handled.



Over-generation & Reranking

N
® Generate a bunch of candidate utterances.
® Rerank them!

Seven days is a good restaurant in the south. 0.9
There is no restaurant in the south. 0.2

Seven days is in the south part of town. 0.7

® Simple & variation included.

(Oh & Rudnicky 2000)



CNN Semantic Reranker

Target dialogue act:

—
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.
SLOT_ ~ ™~
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NAME ~
~
serves
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~
SLOT_ -~
FOOD
e s e
</[s> I
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l | l

inform(name=Seven_days, food=Chinese)
Generated candidate:  </s>SLOT_NAME serves SLOT_FOOD . </s>

VLR
| I

(Kalchbrenner et al., 2014)

Sentence representation
over delexicalised corpus

1-D convolutional layer with
multiple feature maps

Average pooling
over time

inform

4 confirm

request

SLOT_NAME=
Value

SLOT_NAME=
NIL

SLOT_FOOD=
Value

SLOT_FOOD=
NIL

ALLOW_KID
=Yes

ALLOW_KID
=No

\
N ALLOW_KID=
N NIL

Fully connected layer for
classifying dialogue act



Backward Reranker

® Train a RNN with utterances reversed.
® In order to consider backward context
® Ex. “Seven Days is an exceptional restaurant.”

® Reranking Score:
®  LLrowardrun+LLBackwardrnn-LOSScnn



Generated Examples
s

inform_only(name='red victorian bed breakfast',accepts_credit_cards='yes' near='haight',has_internet='yes')

red victorian bed breakfast is the only hotel near haight and accepts credit cards and has internet .
red victorian bed breakfast is the only hotel near haight and has internet and accepts credit cards .
red victorian bed breakfast is the only hotel near haight that accept credit cards and offers internet .
the red victorian bed breakfast has internet and near haight , it does accept credit cards .

the red victorian bed breakfast is the only hotel near haight that accepts credit cards , and offers internet .




Generated Examples

inform_no_match(area=tenderloin)

there are no restaurants in the tenderloin area .

there are 0 restaurants in the tenderloin area .
unfortunately there are 0 restaurants in the tenderloin area .

i could not find any restaurants in tenderloin .

there are no restaurants in tenderloin .




Generated Examples
[ S 20

?request(food)

what type of food are you looking for ?
what type of food would you like ?

what kind of food are you looking for ?
what type of food are you interested in ?
what kind of food would you like ?
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SC-LSTM

® Original LSTM cell
ip = o(Wy;w; + Wyp;h_q)
f, = o(W,, ;W + Wy rh_y)
0; = oc(Wyow; + Wy h,_4) e
¢; = tanh(W,,.w; + W, .h;_;) i
c; =f:0c;_1 +1;0¢;

LSTM cell
ht - Ot® tanh(ct) oA cell I
s d,
©® DA cell i >
Iy = G(erwt + Whrht—l) flf\
dt - l‘tG)dt_l do

® Mo dlfy Ct E)( 0,0,1,0,0,.,1,0,0,..,1,0,0,.. ) dialog act 1-hot

Inform(name=Seven_Days, representation
Ct = ft®ct_1 + it®6t + tanh(WdCdt)

food=Chinese)

(Hochreiter and Schmidhuber, 1997)



Visualization
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SC-LSTM

® Cost function
F(0) = >_: p{log(yt)
+ ||dr|]
4+ Z%’:J 77§||dt+1—dt||

LSTM cell f
® 1%tterm:Log-likelihood @ [ A %
® 2"term: make sure %
rendering all the d s
information needed Vo100 100 1 OO ) s st
® 3" term: close only one fororminame-seven_Days representation

gate each time step. | |
(Hochreiter and Schmidhuber, 1997)



Intuition behind the 3 term
2
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Deep Architecture
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Deep Architecture
22|

® Techniques applied
® Skip connection
(Graves et al 2013)
® RNN dropout
(Srivastava et al 2014) @ @
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Setup

® Data collection:
® SFX restaurant/hotel domains



Ontologies

2z 4

SF Restaurant SF Hotel
inform, inform_only, reject,
confirm, select, request,
reqmore, goodbye
name, type, *pricerange, price,
phone, address, postcode,

*area, *near
*food *hasinternet

*goodformeal *acceptscards

*Kkids-allowed | *dogs-allowed

bold=binary slots, *=slots can take “don’t care” value

shared |act type

specific




Setup

® Data collection:
® SFX restaurant/hotel domains
® Workers recruited from Amazon MT.

® Asked to generate system responses given a DA.
® Resultin ~5.1K utterances, 228/164 distinct acts.

® Training: BPTT, L2 reg, SGD w/ early stopping.
train/valid/test: 3/1/1, data up-sampling

Available at :



Corpus-based Evaluation

N
® Testset: ~1K utterances each domain

® Metrics: BLEU-4 (against multiple references),
ERR(slot error rates)

O)

Averaged over 5 random initialised networks.
Over-gen 20, evaluate on top-5

Models compared:
® handcrafted generator (hdc)

kNN example-based generator (kNN)
class-based LM generator (classim, O&R 2000)
rnn-based generator (rnn, Wen et al 2015)

ONNO)

© © 6



Corpus-based Evaluation
o0 {

0.9
0.85
0.8
0.75
S 07
W 0.65
@ o6
0.55
0.5
0.45 -
0.4 -

B Restaurant B Hotel

hdc knn classim rnn sc-Istm +deep
Model

Selection scheme : 5/20



Corpus-based Evaluation
[N

B Restaurant ¥ Hotel

hdc knn classim rnn sc-Istm +deep

Model
Selection scheme : 5/20



Human Evaluation

® Setup
® Judges (~60) recruited from Amazon MT.
® Asked to evaluate two system responses pairwise.
® Comparing classim, rnn, sc-Istm, and +deep

® Metrics:
® Informativeness, Naturalness (rating out of 3)
® Preference



Human Evaluation
C33 b

Method Informativeness Naturalness

+deep 2.58 2.51
sc-Istm 2.59 2.50
mn 2.53 2.42°
classlm 2.46™" 2.45

"p < 0.05 p < 0.005



Human Evaluation
I

Pref.% | classim rnn sc-Istm +deep
classlm - 46.0 409" 3777
rnn 54.0 - 43.0 35.7"

sc-lstm 59.1° 57 . 47.6
+deep 6237 6437 524 -

“p < 0.05 " p<0.005
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Attentive Encoder-Decoder

36|
® Embedding
<[s> SLOT_NAME serves SLOT _FOOD
Z, — S; -+ V;
® Attention >

/Bt,z' — CIT taIlh(vvfz?nllt—l + Wmmzz)

wt,’l, — GIBt,'L'/ ZZ GIBt,i

|
| | |
dt:a@ziwt,izi ___I
® Generation

® Typlcal LSTM inform name=EAT food=British

(Mei et al 2015)



Experiments
o
® On new laptop ontology

inform, inform_only_match, inform_no_match, inform_count,
inform_all, inform_no_info, recommend, compare, confirm, select,
suggest, request, request_more, goodbye
family*, battery_rating*, drive_range*, is_for_business*,
slots price_range™*, weight_range*, warranty, battery, design, dimension,
utility, weight, platform, memory, price, drive, processor
bold=binary slots, *=slots can take don’t care value

act
type

® Comparing performance and adaptation
capability with SC-LSTM.



From scratch

os [-/:’/‘/% =
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0.15 - 1 I | l |
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Percentage of training data



Adapt from Rest+Hotel to Laptop
39|
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0.45 == — 4:0—/,—. 029
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Conclusion
el
NLG can be learned N2N from data.

Learn LM & slot gating control signal jointly
Corpus-based/Human evaluation.
More colloquial, more scalable.

© © ®© ©®© 6

Potential for open domain SDS.
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